Domination subdivision numbers of trees

نویسندگان

  • H. Aram
  • Seyed Mahmoud Sheikholeslami
  • Odile Favaron
چکیده

A set S of vertices of a graph G = (V, E) is a dominating set if every vertex of V (G) \ S is adjacent to some vertex in S. The domination number γ (G) is the minimum cardinality of a dominating set of G. The domination subdivision number sdγ (G) is the minimum number of edges that must be subdivided in order to increase the domination number. Velammal showed that for any tree T of order at least 3, 1 ≤ sdγ (T ) ≤ 3. In this paper, we give two characterizations of trees whose domination subdivision number is 3 and a linear algorithm for recognizing them. c © 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the domination subdivision numbers of trees

A set D of vertices of a graph G is a dominating set if every vertex in V \D is adjacent to some vertex in D. The domination number γ(G) of G is the minimum cardinality of a dominating set of G. The domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the domination number. Arumugam h...

متن کامل

Eternal m-security subdivision numbers in graphs

An eternal $m$-secure set of a graph $G = (V,E)$ is aset $S_0subseteq V$ that can defend against any sequence ofsingle-vertex attacks by means of multiple-guard shifts along theedges of $G$. A suitable placement of the guards is called aneternal $m$-secure set. The eternal $m$-security number$sigma_m(G)$ is the minimum cardinality among all eternal$m$-secure sets in $G$. An edge $uvin E(G)$ is ...

متن کامل

A characterization of trees with equal Roman 2-domination and Roman domination numbers

Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...

متن کامل

On trees with equal Roman domination and outer-independent Roman domination numbers

A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...

متن کامل

Trees whose domination subdivision number is one

A set S of vertices of a graphG = (V,E) is a dominating set if every vertex of V (G)\S is adjacent to some vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set of G. The domination subdivision number sdγ(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the domination number. Velammal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009